Proper orthogonal decomposition analysis of the cavitating flow around a hydrofoil with an insight on the kinetic characteristics

Author:

Yu AnORCID,Feng Wenjin,Li LitingORCID,Li WeiyuORCID,Zhou DaqingORCID

Abstract

In this research, the cavitating flow around a NACA0015 (National Advisory Committee for Aeronautics) hydrofoil obtained by the large-eddy simulation method is analyzed using the proper orthogonal decomposition (POD) theory. Various fundamental mechanisms have been investigated thoroughly, including the reentrant jet behavior, pressure gradient mechanism, vortex dynamics, and dynamic properties of the hydrofoil. The influence of the vortex dynamics, pressure mechanism, and temporal/spatial evolution is revealed. The POD decomposition indicates that the first four dominant POD modes occupy 97.4% of the entire energy. Based on the vortex force field extracted from the first four single POD modes, it is found that the lift-and-drag characteristics in the cavitating flow are determined by the specific spatial distribution of mode vortex structures. In addition, the coupling of velocity pulsations and pressure fluctuations is carried out to obtain the POD modal pressure gradient field, which reveals that the pressure gradient has a close connection with the cavity evolution. Furthermore, the vortex force and pressure gradient are reconstructed using the first four modes, 17 modes, and 160 modes, which indicates that the low-order POD modes without the impact of small-scale structures and noise can clearly capture the fundamental aspects of the flow field.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3