Intracavity dynamics-based gain-assisted sensing with microtubule Raman microlaser

Author:

Li Mingfang1ORCID,Dai Zongren1,Tian Mingwang1ORCID,Tan Yidong1ORCID

Affiliation:

1. The State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University , Beijing 100084, China

Abstract

Microcavity lasers show excellent performance as a miniaturized microsensor in various applications. However, their relatively weak power may be easily submerged in system noises and disturbed by environmental fluctuations, rendering them ineffective at detecting small signals for precise sensing. To solve this problem, the laser differential frequency-shift feedback technique is demonstrated in a microtubule Raman laser to achieve the optical gain assistance. When the microlaser is frequency-shift-modulated and returns back to the resonator, the measurement signal can resonate with the laser relaxation oscillation and be significantly enhanced. The intracavity dynamics-based enhancement makes it effective for increasing intensity changes caused by analytes. Small signals that would otherwise be buried in system noises and go undetected can be more easily resolved. In addition, the microsensor reduces the spectral measurement range and offers a way to observe the fast dynamic response. Based on that, a measurement resolution of 50 nm nanoparticle detection limit and a refractive index noise-limited resolution of 8.18 × 10−7 refractive index unit (RIU) are demonstrated. The dynamic phase transition of thermosensitive hydrogel is further investigated as a validation of its rapid detection capability. Integrated with an inherent microfluidic channel, the proposed microsensor provides a direct interaction between analytes and probe light with ultrasmall sample consumption down to 50 pl. It is expected to boost the detection of weak signals in microlasers and enlighten the development of optofluidic microsensors in exploring diverse biochemical processes.

Funder

National Science Fund for Excellent Young Scholars of China

National Natural Science Foundation of China

Royal Society Newton Advanced Fellowship

Publisher

AIP Publishing

Subject

Computer Networks and Communications,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3