Morphological, optical, and electrical properties of RF-sputtered zinc telluride thin films for electronic and optoelectronic applications

Author:

Panaitescu Ana-Maria1ORCID,Antohe Iulia2ORCID,Răduță Ana-Maria1ORCID,Iftimie Sorina1ORCID,Antohe Ștefan13ORCID,Mihăilescu Cristian Nicolae2ORCID,Antohe Vlad-Andrei14ORCID

Affiliation:

1. University of Bucharest, Faculty of Physics, R&D Center for Materials and Electronic & Optoelectronic Devices (MDEO), Atomiștilor Street 405, 077125 Măgurele, Ilfov, Romania

2. National Institute for Laser, Plasma and Radiation Physics (INFLPR), Atomiștilor Street 409, 077125 Măgurele, Ilfov, Romania

3. Academy of Romanian Scientists (AOSR), Splaiul Independenței 54, 050094 Bucharest, Romania

4. Université catholique de Louvain (UCLouvain), Institute of Condensed Matter and Nanosciences (IMCN), Place Croix du Sud 1, B-1348 Louvain-la-Neuve, Belgium

Abstract

Zinc telluride (ZnTe) thin films were deposited by radio-frequency magnetron sputtering (RF-MS) onto optical glass coated by a silver–copper (Ag:Cu) thin film representing the back-electrode, and they were subsequently electrically contacted with an aluminum (Al) layer acting as the top-electrode. The RF-MS procedure was carried out at 50 W in argon (Ar) gas atmosphere kept at 2.5 × 10−3 mbar working pressure for 75 min at a substrate temperature of 220 °C kept constant during deposition. Morphological investigations by scanning electron microscopy allowed a first evaluation of the ZnTe film’s thickness. Optical characterization was then performed via absorption and transmission measurements in the spectral range between 300 and 1500 nm at room temperature. Subsequently, the thickness and bandgap energy of the ZnTe thin film were evaluated to be ∼508 nm and ∼2.13 eV, respectively. Moreover, they revealed high transmittance in infrared and near infrared regions of the electromagnetic spectrum. Then, the electrical measurements of Ag:Cu/ZnTe/Al “sandwich” structure (current–voltage characteristics) at six temperatures ranging from 303 to 354 K were performed, allowing the identification of the charge transport mechanisms through the structure along with their corresponding parameters. Based on the excellent optical and electrical properties, these ZnTe thin films show great potential as candidates for performant small-wavelength photodetectors.

Funder

Unitatea Executivă pentru Finanțarea Învățământului Superior, a Cercetării, Dezvoltării și Inovării

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3