Unsteady seepage behavior of lubricant on loaded porous surface

Author:

Zhang Guotao12ORCID,Shi Yingkang12,Li Congmin3,Xu Ming3,Yin Yanguo3

Affiliation:

1. China International Science and Technology Cooperation Base on Intelligent Equipment Manufacturing in Special Service Environment, Maanshan 243002, China

2. School of mechanical engineering, Anhui University of Technology, Ma'Anshan 243032, China

3. Institute of Tribology, Hefei University of Technology, Anhui Hefei 230009, China

Abstract

The seepage behavior of lubricant on a porous surface has a significant influence on its lubrication characteristics. This paper studied the unsteady seepage response of a lubricant on a loading porous surface. The exudation and supply behaviors of lubricant to the porous surface are discussed. The results show that the lubricant infiltration and exudation all exist on the porous surface. The normal seepage velocity of the lubricant can be divided into the primary velocity and secondary velocity at different positions of the whole surface. In most loading times, the primary velocity is greater than the secondary velocity. The change of the principal velocity shows that the infiltration and exudation of the lubricant arise in the contact area and its inlet, respectively. On both sides away from the entrance of the contact area, the secondary velocity goes through a diffusion, fluctuation, and stability process within the loading period. During the fluctuation of the velocity, the phenomena of infiltration and exudation alternate repeatedly. The secondary velocity occasionally exceeds the principal velocity. The normal pressure gradient is the internal cause that drives the diffusion and fluctuation of the secondary velocity. The velocity fluctuation can regulate lubricant quantity on the porous surface spontaneously, thereby forming a closed-loop adaptive lubrication system. The research can provide a theoretical basis for the lubricant supply behavior and the self-lubricating mechanism of the squeezed porous interface.

Funder

National Natural Science Foundation of China

Open project of china international science and technology cooperation base on intelligent equipment manufacturing in special service environment

Anhui Natural Science Foundation

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3