Percolation and Supply Behavior of Lubricant on Porous Self‐Lubricating Material

Author:

Zhang Guotao12ORCID,Cai Weijie12,Wei Xicheng23,Yin Yanguo4

Affiliation:

1. School of Mechanical Engineering Anhui University of Technology Ma’Anshan 243032 China

2. Zhejiang institute of advanced materials SHU Hangzhou 314100 China

3. School of materials science and engineering Shanghai University Shanghai 200444 China

4. Institute of Tribology Hefei University of Technology Hefei 230009 P. R. China

Abstract

This article aims to investigate the percolation and supply behavior of lubricant on the porous self‐lubricating material. The numerical model is established to describe the infiltration‐exudation response in the deformed porous material. It is found that the lubricant stored in the pores is forced to flow when the loaded porous matrix deforms. The flow drives the seepage stratification in the porous body and forms an interlayer flow zone. The fluid pressure gradient in the normal direction is the internal factor of the seepage stratification. The interlayer flow zone first appears in the middle of the vertical direction of the porous matrix. With the increase of loading time, the interlayer flow zone gradually moves from the middle to the bottom of the porous matrix, which means that the quantity of the lubricant stored in the porous surface decreases. In the whole process of the seepage response, the lubricant flows out from the inlet and continuously supplies lubricant to the contact area. Delaying the downward movement of the interlayer flow zone can ensure the continuous exudation of the lubricant, which is beneficial to maintain excellent lubrication characteristics.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3