Drag reduction by flapping a pair of flexible filaments behind a cylinder

Author:

Mao QianORCID,Liu YingzhengORCID,Sung Hyung JinORCID

Abstract

The hydrodynamic mechanism of drag reduction by flapping a pair of flexible filaments behind a cylinder was explored using the penalty immersed boundary method. The effects of the phase difference between two filaments, the attachment height, and the flapping amplitude on drag reduction were examined. The flapping filaments weaken the vortex shedding via the destructive interaction between the vortices with the opposite signal. The clapping (out-of-phase) flexible filaments experience a lower friction drag and reduce a form drag of the cylinder, showing a better drag reduction than the snaking (in-phase) flexible filaments and the clapping rigid filaments. A minimum drag is obtained at an appropriate attachment height and flapping amplitude that avoid collision of the filaments and weaken the shear-layer–filaments interaction. The effectiveness ratio of the clapping filaments is higher than that of the snaking filaments. Energy saving can be achieved by avoiding the shear layer–filament interaction at a low flapping amplitude, whereas the filaments can further reduce the drag with greater energy consumption at an appropriate flapping amplitude. In addition, the total drag decreases with increasing Reynolds number, accompanied by a transition of the wake pattern from the 2S mode to the P + S mode.

Funder

National Research Foundation of Korea

China Scholarship Council

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3