Harmonic forcing of a laminar bluff body wake with rear pitching flaps

Author:

Giannenas Athanasios EmmanouilORCID,Laizet SylvainORCID,Rigas GeorgiosORCID

Abstract

A numerical study on the response of a two-dimensional bluff body wake subjected to harmonic forcing imposed by two rear pitching flaps is performed. The wake is generated by a rectangle at a height-based Reynolds number $Re=100$ , characterised by laminar vortex shedding. Two forcing strategies are examined corresponding to in-phase ‘snaking’ and out-of-phase ‘clapping.’ The effects of the bluff body aspect ratio ( $AR=1,2,4$ ), flapping frequency, flapping amplitude, flap length and Reynolds number are investigated. For the snaking motion, a strong fundamental resonance of the root mean square (r.m.s.) drag is observed when the wake is forced near the vortex shedding frequency. For the clapping motion, a weak subharmonic resonance is observed when the forcing is applied near twice the vortex shedding frequency resulting in an increase of the lift r.m.s. whereas the drag r.m.s. remains unaffected. Both resonances intensify the vortex shedding and a concomitant mean drag increase is observed for the snaking motion. Forcing away from the resonant regimes, both motions result in considerable drag reduction through wake symmetrisation and propulsion mechanisms. The formation of two vortex dipoles per oscillation period due to the flapping motion, which weaken the natural vortex shedding, has been identified as the main symmetrisation mechanism. A single scaling parameter is proposed to collapse the mean drag reduction of the forced flow for both motions over a wide range of flapping frequencies, amplitudes and flap lengths. Finally, the assessment of the performance of the forcing strategies has revealed that clapping is more effective than snaking.

Funder

Partnership for Advanced Computing in Europe AISBL

Engineering and Physical Sciences Research Council

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3