On the relationship between solid particle attractors and thermal inhomogeneities in vibrationally driven fluid-particle systems

Author:

Santhosh Balagopal ManayilORCID,Lappa Marcello1ORCID

Affiliation:

1. Department of Mechanical and Aerospace Engineering, University of Strathclyde , James Weir Building, 75 Montrose Street, Glasgow G1 1XJ, United Kingdom

Abstract

The present analysis extends earlier authors' work [Crewdson et al., “Two-dimensional vibrationally-driven solid particle structures in non-uniformly heated fluid containers,” Chaos 32, 103119 (2022); M. Lappa, “Characterization of two-way coupled thermovibrationally driven particle attractee,” Phys. Fluids 34(5), 053109 (2022); M. Lappa and T. Burel, “Symmetry breaking phenomena in thermovibrationally driven particle accumulation structures,” ibid.32(5), 053314 (2020); and M. Lappa, “The patterning behavior and accumulation of spherical particles in a vibrated non-isothermal liquid,” ibid.26(9), 093301 (2014)] on the existence of solid particle attractee in thermovibrational flow in order to identify new physical principles and enable increased control over the ability of particles to target desired locations into the host fluid. The causality between the thermal boundary conditions and the multiplicity and morphology of emerging particle structures is discussed, and new fundamental topological concepts are harnessed through the combination of two-dimensional and three-dimensional simulations. It is shown that the threefold relationship among the inclination of vibrations, the multi-directional nature of the imposed temperature gradient, and the dimensionality of the system itself can open up new pathways for additional classes of attractors. These can manifest themselves as compact particle structures or completely disjoint sets, apparently behaving as they were driven by different clustering mechanisms (coexisting in the physical space, but differing in terms of characteristic size, shape, and position). A variety of new solutions are presented for a geometry as simple as a cubic enclosure in the presence of localized spots of temperature on otherwise uniformly heated or cooled walls. In order to filter out possible asymmetries due to fluid-dynamic instabilities induced by the back influence of the solid mass on the fluid flow, the analysis is conducted under the constraint of one-way coupled phases.

Funder

Science and Technology Facilities Council

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3