Vibrationally driven particle formations in fluid systems with bimodal thermal inhomogeneities

Author:

Santhosh Balagopal ManayilORCID,Lappa Marcello1ORCID

Affiliation:

1. Department of Mechanical and Aerospace Engineering, University of Strathclyde , James Weir Building, 75 Montrose Street, Glasgow G1 1XJ, United Kingdom

Abstract

This study builds on and extends an earlier investigation [Santhosh and Lappa, “On the relationship between solid particle attractors and thermal inhomogeneities in vibrationally-driven fluid-particle systems,” Phys. Fluids 35(10), 103316 (2023)]. As the predecessor work, it can be placed in a wider theoretical context, that is, a line of inquiry started a decade ago [Lappa, “The patterning behavior and accumulation of spherical particles in a vibrated non-isothermal liquid,” Phys. Fluids 26(9), 093301 (2014)] about the surprising ability of high-frequency vibrations imposed on a non-isothermal fluid containing dispersed solid particles to support the self-emergence of ordered particle structures. Here, the non-trivial relationship between the number and shape of the particle formations and the nature of the thermal conditions along the boundary of the fluid container is further explored by probing in detail the role of thermal spot multiplicity. The problem is approached in the framework of a hybrid Eulerian–Lagrangian numerical approach. The results indicate that completely new morphologies become accessible, which are not possible when only two walls are thermally active. Moreover, on increasing the angle ϕ formed by vibrations with the direction perpendicular to the adiabatic walls of the cavity, the compact surfaces formed by particles for ϕ = 0° are taken over by more complex formations, which give the observer the illusion of a flexible fabric formed by the intersection of many independent filamentary structures.

Funder

Science and Technology Facilities Council

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3