DeepQMC: An open-source software suite for variational optimization of deep-learning molecular wave functions

Author:

Schätzle Z.1ORCID,Szabó P. B.1ORCID,Mezera M.1ORCID,Hermann J.2ORCID,Noé F.1234ORCID

Affiliation:

1. FU Berlin, Department of Mathematics and Computer Science 1 , Arnimallee 6, Berlin 14195, Germany

2. Microsoft Research AI4Science 2 , Karl-Liebknecht Str. 32, Berlin 10178, Germany

3. FU Berlin, Department of Physics 3 , Arnimallee 14, Berlin 14195, Germany

4. Rice University, Department of Chemistry 4 , Houston, Texas 77005, USA

Abstract

Computing accurate yet efficient approximations to the solutions of the electronic Schrödinger equation has been a paramount challenge of computational chemistry for decades. Quantum Monte Carlo methods are a promising avenue of development as their core algorithm exhibits a number of favorable properties: it is highly parallel and scales favorably with the considered system size, with an accuracy that is limited only by the choice of the wave function Ansatz. The recently introduced machine-learned parametrizations of quantum Monte Carlo Ansätze rely on the efficiency of neural networks as universal function approximators to achieve state of the art accuracy on a variety of molecular systems. With interest in the field growing rapidly, there is a clear need for easy to use, modular, and extendable software libraries facilitating the development and adoption of this new class of methods. In this contribution, the DeepQMC program package is introduced, in an attempt to provide a common framework for future investigations by unifying many of the currently available deep-learning quantum Monte Carlo architectures. Furthermore, the manuscript provides a brief introduction to the methodology of variational quantum Monte Carlo in real space, highlights some technical challenges of optimizing neural network wave functions, and presents example black-box applications of the program package. We thereby intend to make this novel field accessible to a broader class of practitioners from both the quantum chemistry and the machine learning communities.

Funder

Horizon 2020 Framework Program

Berlin Mathematics Research Center MATH+

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3