Affiliation:
1. School of Physical and Mathematical Sciences, Nanyang Technological University 1 , Singapore 637371
2. School of Computer Science and Engineering, Nanyang Technological University 2 , Singapore 639798
Abstract
Granger causality is a commonly used method for uncovering information flow and dependencies in a time series. Here, we introduce JGC (Jacobian Granger causality), a neural network-based approach to Granger causality using the Jacobian as a measure of variable importance, and propose a variable selection procedure for inferring Granger causal variables with this measure, using criteria of significance and consistency. The resulting approach performs consistently well compared to other approaches in identifying Granger causal variables, the associated time lags, as well as interaction signs. In addition, we also discuss the need for contemporaneous variables in Granger causal modeling as well as how these neural network-based approaches reduce the impact of nonseparability in dynamical systems, a problem where predictive information on a target variable is not unique to its causes, but also contained in the history of the target variable itself.
Subject
Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献