Nonlinear causal network learning via Granger causality based on extreme support vector regression

Author:

Yang Guanxue1ORCID,Hu Weiwei1ORCID,He Lidong2,Dou Liya3ORCID

Affiliation:

1. School of Electrical and Information Engineering, Jiangsu University 1 , Zhenjiang 212013, China

2. School of Automation, Nanjing University of Science and Technology 2 , Nanjing 210094, China

3. Department of Automation, Beijing University of Chemical Technology 3 , Beijing 100029, China

Abstract

For complex networked systems, based on the consideration of nonlinearity and causality, a novel general method of nonlinear causal network learning, termed extreme support vector regression Granger causality (ESVRGC), is proposed. The nonuniform time-delayed influence of the driving nodes on the target node is particularly considered. Then, the restricted model and the unrestricted model of Granger causality are, respectively, formulated based on extreme support vector regression, which uses the selected time-delayed components of system variables as the inputs of kernel functions. The nonlinear conditional Granger causality index is finally calculated to confirm the strength of a causal interaction. Generally, based on the simulation of a nonlinear vector autoregressive model and nonlinear discrete time-delayed dynamic systems, ESVRGC demonstrates better performance than other popular methods. Also, the validity and robustness of ESVRGC are also verified by the different cases of network types, sample sizes, noise intensities, and coupling strengths. Finally, the superiority of ESVRGC is successful verified by the experimental study on real benchmark datasets.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3