5.1 Å EOT and low leakage TiN/Al2O3/Hf0.5Zr0.5O2/Al2O3/TiN heterostructure for DRAM capacitor

Author:

Luo Zhen1ORCID,Du Xinzhe1ORCID,Gan Hui1,Lin Yue1,Yan Wensheng2ORCID,Shen Shengchun1ORCID,Yin Yuewei1ORCID,Li Xiaoguang13ORCID

Affiliation:

1. Hefei National Research Center for Physical Sciences at the Microscale, Department of Physics and CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, University of Science and Technology of China 1 , Hefei 230026, China

2. National Synchrotron Radiation Laboratory, University of Science and Technology of China 2 , Hefei 230029, China

3. Collaborative Innovation Center of Advanced Microstructures, Nanjing University 3 , Nanjing 210093, China

Abstract

Further scaling of dynamic random-access memory (DRAM) faces critical challenges because of the lack of materials with both high dielectric constant and low leakage. In this work, engineering Hf1−xZrxO2 (HZO) films to the morphotropic phase boundary (MPB) and inserting Al2O3 interface layers with a wide bandgap are utilized to overcome this bottleneck. By tuning Zr composition and the woken-up process, the ratio of tetragonal and orthorhombic phases is manipulated to achieve the desired high dielectric constant MPB state. On this basis, Al2O3 ultrathin layers are inserted to further enhance the dielectric constant as well as reduce the leakage current. As a result, a high dielectric constant of ∼ 46.7 (equivalent oxide thickness ∼ 5.1 Å) and low leakage current density (<10−7 A/cm2 at ±0.5 V) are achieved in TiN/Al2O3 (0.2 nm)/Hf0.5Zr0.5O2 (5.6 nm)/Al2O3 (0.3 nm)/TiN capacitors. Furthermore, long dielectric breakdown time of the heterostructure confirms its application potential. These results are useful for developing next generation DRAM capacitor devices.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3