Enhanced resistive switching characteristics of conductive bridging memory device by a Co–Cu alloy electrode

Author:

Lee Calvin Xiu Xian12ORCID,Dananjaya Putu Andhita1ORCID,Chee Mun Yin1ORCID,Poh Han Yin12ORCID,Tan Funan1ORCID,Thong Jia Rui12ORCID,Liu Lingli1ORCID,Lim Gerard Joseph1ORCID,Du Yuanmin1ORCID,Tan Juan Boon2ORCID,Lew Wen Siang1ORCID

Affiliation:

1. School of Physical and Mathematical Sciences, Nanyang Technological University 1 , 21 Nanyang Link, Singapore 637371

2. GlobalFoundries 2 , 60 Woodlands Industrial Park D Street 2, Singapore 738406

Abstract

One of the main challenges in the development of conductive bridging random access memory (CBRAM) is the large stochastic nature of ion movement that ultimately leads to large parameter variability. In this study, the resistive switching variability of CBRAM devices is significantly improved by employing Co–Cu alloy as the active electrode. By comparing with Pt/Ta2O5/Co devices, the Co70Cu30 alloy exhibited lower forming voltage (<2 V), lower SET voltage (<0.70 V), and faster response time (∼70 ns). The filament stability indicated by the distribution of SET/RESET voltage and high resistance state/low resistance state variation was significantly improved. Our experimental results suggest the formation of Co filaments, and the proposed mechanism is governed by the galvanic effect. In addition, a comparison between Co70Cu30 and Co30Cu70 alloys highlights that the relative proportion between Co and Cu plays an essential role in the device performance. A physical model based on different electrochemical activities of the alloys has been proposed to explain the filament formation and the improved switching uniformity in the Co70Cu30 alloy. This study not only develops a CBRAM with enhanced performance but also advances the implementation of suitable alloy systems for the application of such devices.

Funder

RIE2020 ASTAR AME IAF-ICP

EDB-IPP: Economic Development Board - Industrial Postgraduate Program

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3