Atomistic insight into the shock-induced bubble collapse in water

Author:

Rawat SunilORCID,Mitra NilanjanORCID

Abstract

Atomistic simulations are employed to investigate the dynamics of shock-induced bubble collapse in water. Two types of bubbles (an empty bubble and a bubble filled with N2 gas) in water are considered in this study. Apart from the manifestation of a rise in temperature and pressure due to implosion energy released upon bubble collapse; distinct differences in response could be observed for the case of empty bubble to that of the case of the bubble with N2 gas. It is observed that the mechanism of the bubble associated with bubble dissociation as well as the time taken for collapse are changed with the introduction of N2 gas within the bubble. Numerous new chemical species are also observed as the N2 within the bubble reacts with water molecules upon shock compression which can be correlated with the differences in observation between an empty bubble system and a system containing N2 gas. This study is anticipated to lead to further improvements in continuum theories for cavitation bubble collapse in which the effects of chemical reactions need to be incorporated.

Funder

Office of Naval Research Global

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3