Analysis of nano bubble collapse process based on molecular simulation method

Author:

ZHANG Xuesong ,FAN Zhenzhong ,TONG Qilei ,FU Yuanfeng

Abstract

A molecular dynamics simulation method is used to study the process of nanobubbles under the action of shock waves, which gradually depresses and develops to collapse, and this paper focuses on the mechanism of the impact velocity and bubble size on the kinetic properties of nanobubble collapse. The results show that the collapse of nanobubbles goes through three stages. The preferred stage is the compression of water molecules on the outside of the bubble, followed by the destruction of the stable structure of the liquid film caused by the shock wave, and finally develops to the stage of complete bubble collapse; when the impact velocity is larger, the smaller size bubbles have shorter bubble collapse time under the action of the stronger impact effect; the nanobubbles form a bulge at the right end of the velocity contour after the collapse of the high-speed jet, and the degree of the bulge increases with the increase of the bubble size and the impact velocity, and water molecules move to the center of the bubbles. Large, water molecules to the center of the bubble convergence, the formation of vortex structure above and below the bubble, effectively enhancing the fluid internal mass transfer; with the increase in bubble size and impact velocity, the density around the bubble is also gradually increasing, the bubble completely collapsed when the local density up to 1.5 g/cm<sup>3</sup> nearby; water hammer impact time in the bubble volume attenuation of 50% after the increase in bubble size and impact velocity, water hammer impact is more and more important, the water hammer impact is more and more important. With the increase of bubble size and impact velocity, the water hammer impact is more and more obvious, for <i>u<sub>p</sub></i>=3.0 km/s, <i>D</i>=10 nm nano-bubble structure after the collapse of the jet water hammer impact formed by the local pressure up to 30 GPa.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Reference26 articles.

1. Ma Y, Wu J, Zhou W 2024 J. Environ. Eng. Technol. 14 1141 (in Chinese) [马艳, 吴俊, 周维 2024 环境工程技术学报 14 1141]

2. Yang L, Liao C H, Zhu Y Z, Chen H J, Jin Q F 2012 Chem. Ind. Eng. Prog. 31 1333 (in Chinese) [杨丽, 廖传华, 朱跃钊, 陈海军, 金勤芳 2012 化工进展 31 1333]

3. Zhang L J, Zheng J, Wen B, Hu J 2024 Sci. Sin. Chem. 54 85 (in Chinese) [张立娟, 郑晋, 文博, 胡钧 2024 中国科学:化学 54 85]

4. Zhang M, Song Z Z, Sun S S, Zhang Z Y, Mu H Y, Zhao L P, Li Y F, Zhang Z Z 2016. J. Environ. Eng. 10 599 (in Chinese) [张敏, 宋昭峥, 孙珊珊, 张志勇, 穆红岩, 赵立平, 李永峰, 张忠智 2016 环境工程学报 10 599]

5. Zhai W Z, Wang Y G, Wang X, Dong J, Wang H J 2018 J. Environ. Sci. Manage. 43 95 (in Chinese) [翟伟哲, 王永刚, 王旭, 董婧, 王恒嘉 2018 环境科学与管理 43 95]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3