Kriging-based multi-objective optimization on high-speed train aerodynamics using sequential infill criterion with gradient information

Author:

Dai ZhiyuanORCID,Li Tian,Krajnović Siniša1,Zhang Weihua

Affiliation:

1. Department of Mechanics and Maritime Sciences, Chalmers University of Technology 2 , 41296 Gothenburg, Sweden

Abstract

For models with large numerical simulation costs, such as high-speed trains, using as few samples as possible to construct a high-precision surrogate model during aerodynamic multi-objective optimization is critical to improving optimization efficiency. This study proposes a sequential infill criterion (SIC) appropriate for the Kriging surrogate model to address this issue. Three multi-objective functions are employed to test the feasibility of constructing a surrogate model based on SIC, and the SIC surrogate model then performs multi-objective aerodynamic optimizations on the high-speed train. The findings indicate that the expected improvement infill criterion (EIC) in the first stage can enhance the global prediction accuracy of the SIC. An infill criterion based on EIC that fuses gradient information (PGEIC) in the second stage is proposed to seek samples in the Pareto front. The PGEIC surrogate model achieves the lowest generational distance and prediction error. The performance of EIC for global search, EIC for Pareto front search, and infill criterion for Pareto front search using only gradient information is poor. The final PGEIC–SIC surrogate model of train aerodynamics has less than 1% prediction error for the three optimization objectives. The optimal solution reduces the aerodynamic drag force of the head car and the aerodynamic drag and lift force of the tail car by 4.15%, 3.21%, and 3.56%, respectively, compared with the original model. Furthermore, sensitivity analysis of key parameters revealed that the nose height v1, cab window height v3, and lower contour line have a greater impact on aerodynamic forces. Moreover, the nose and cab window heights of the optimal model have been reduced, and the lower contour line is concave. Correspondingly, the streamlined shape appears more rounded and slender.

Funder

Sichuan Science and Technology Program

National Natural Science Foundation of China

Science and Technology Program of China National Accreditation Service for Conformity Assessment

Project of State Key Laboratory of Rail Transit Vehicle System

China Scholarship Council

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3