A parallel variable-fidelity algorithm for efficient constrained multi-objective aerodynamic design optimization

Author:

Zhang YuORCID,Wang ZhenkunORCID,Han Zhong-Hua

Abstract

Modern aerodynamic design optimization aims to discover optimal configurations using computational fluid dynamics under complex flow conditions, which is a typical expensive multi-objective optimization problem. The multi-objective evolutionary algorithm based on decomposition (MOEA/D) combined with efficient global optimization is a promising method but requires enhanced efficiency and faces limitations in its application to multi-objective aerodynamic design optimization (MOADO). To address the issues, an efficient parallel MOEA/D assisted with variable-fidelity optimization (VFO) is proposed for solving MOADO, called the MOEA/D-VFO algorithm. Variable-fidelity surrogates are built for objectives and constraints, achieving higher accuracy using fewer high-fidelity samples and a great number of low-fidelity samples. By retaining more good candidates, the sub-optimization problems defined by decomposing original objectives are capable of discovering more favorable samples using MOEA/D, which prompts optimization convergence. A constraint-handling strategy is developed by incorporating the probability of feasibility functions in the sub-optimizations. The selection of new samples for parallel evaluation is improved by filtering out poor candidates and selecting effective promising samples, which improves the feasibility and diversity of solved Pareto solutions. A Pareto front (PF) can be efficiently found in a single optimization run. The proposed approach is demonstrated by four analytical test functions and verified by two aerodynamic design optimizations of airfoils with and without constraints, respectively. The results indicate that the MOEA/D-VFO approach can greatly improve optimization efficiency and obtain the PF satisfying constraints within an affordable computational budget.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3