Recent progress on femtosecond laser micro-/nano-fabrication of functional photonic structures in dielectric crystals: A brief review and perspective

Author:

Jia Yuechen1ORCID,Chen Feng1ORCID

Affiliation:

1. School of Physics, State Key Laboratory of Crystal Materials, Shandong University , Jinan 250100, China

Abstract

Femtosecond (Fs) laser micro-/nano-fabrication technology allows direct definition of on-demand nanostructures with three-dimensional (3D) geometric features and tailored photonic functionalities in a facile manner. In addition, such a strategy is widely applicable to various material families, including dielectrics, semiconductors, and metals. Based on diverse dielectric crystals, fs-laser direct writing of optical waveguides with flexible geometries and functional waveguide-based photonic devices have been well-developed. Beyond waveguide architectures, the combination of 3D nanofabrication of fs lasers and the multi-functionalities of dielectric crystals has also lighted up the future development of novel photonic structures with features even beyond the optical diffraction limit. In this article, promising research topics on domain engineering for nonlinear optics, color centers and waveguides for integrated quantum photonics, and surface processing for integrated photonics enabled by fs laser micro-/nano-fabrication in dielectric crystals are briefly overviewed. We highlight recent progress on these research topics and stress the importance of optical aberration correction during laser fabrication, followed by a discussion of challenges and foreseeing the future development of fs laser defined nanostructures in dielectric crystals toward multi-functional photonics.

Funder

Taishan Scholar Project of Shandong Province

Shandong University

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

AIP Publishing

Subject

Computer Networks and Communications,Atomic and Molecular Physics, and Optics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3