Impact of blade shape on the aerodynamic performance and turbulent jet dynamics produced by a ducted rotor

Author:

Maldonado Victor1ORCID,Fernandes Guilherme D.1ORCID

Affiliation:

1. Flow Control and Aerodynamics Lab, Department of Mechanical Engineering, Texas Tech University , Lubbock, Texas 79409, USA

Abstract

A ducted rotor system was used to produce turbulent jets with a Reynolds number up to 5.97 × 105 and Mach number of 0.222 based on mean streamwise velocity. Three rotors with a diameter of 11.8 cm were manufactured and tested inside a duct with a 1 mm tip clearance at a speed up to 30 000 revolutions per minute (rpm). All rotor blades contain the same aspect ratio of 2.2, a National Advisory Committee for Aeronautics 2410 airfoil, and ideal pitch distribution. However, three different blade planform shapes were used including a rectangular shape with constant chord, trapezoidal shape with a taper ratio of 0.5, and elliptical shape where the trailing edge of the blade is expressed with an elliptical function. The rotor thrust and electric power were measured, and the thrust coefficient and figure of merit was computed. The flow-field produced by the ducted rotors was measured in the near-field using laser Doppler velocimetry techniques. The inflow velocity approximately 3 mm upstream of the rotor blade leading edge was acquired and its significance on blade aerodynamics and performance is analyzed. Time-averaged contours of cross-stream vorticity reveal intense hub and blade tip vortex structures, which are impacted by the shape of the blade, particularly in the blade tip region. Tip vorticity as well as streamwise turbulence intensity and turbulent kinetic energy in this region were mitigated for the rotors with trapezoidal and elliptical blades. However, the turbulent structure of the jet produced by all three rotor blade shapes showed similarity at a mere 2.8 rotor diameters downstream of the rotor. This finding emphasizes the importance of blade design on the near-field dynamics of ducted rotor flows for aircraft propulsion.

Funder

National Aeronautics and Space Administration

Publisher

AIP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3