Solution of the flow over a non-uniform heavily loaded ducted actuator disk

Author:

Bontempo R.,Manna M.

Abstract

AbstractThe paper presents an extension to ducted rotors of the nonlinear actuator disk theory of Conway (J. Fluid Mech., vol. 365, 1998, pp. 235–267) and it is exact for incompressible, axisymmetric and inviscid flows. The solution for the velocities and the Stokes stream function results from the superposition of ring vortices properly arranged along the duct surface and the wake region. Using a general analytical procedure the flow fields are given as a combination of one-dimensional integrals of expressions involving complete as well as incomplete elliptic integrals. The solution being exact, the proper shape of the slipstream whether converging or diverging is naturally accounted for, even for heavy loads. A semi-analytical method has been developed that enables the flow induced by an actuator disk housed in a contoured duct to be solved duly accounting for the nonlinear mutual interaction between the duct and the rotor. Non-uniform load distributions, rotor wake rotation and ducts of general shapes and thickness distribution can be dealt with. Thanks to its reduced numerical cost, the method is well suited for the design and/or analysis of ducted rotors for marine, wind and aeronautical applications.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference32 articles.

1. An approach to the design of ducted propeller;Çelik;Scientia Iranica, Trans. B: Mech. Engng,2010

2. Chaplin H. R. 1964 A method for numerical calculation of slipstream contraction of a shrouded impulse disk in the static case with application to other axisymmetric potential flow problems. Tech. Rep. 1857. David Taylor Model Basin.

3. van Gunsteren L. A. 1973 A contribution to the solution of some specific ship propulsion problems. PhD thesis, Delft University of Technology.

4. de Vries O. 1979 Fluid Dynamic Aspects of Wind Energy Conversion. AGARDograph No. 243.

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3