Study on flow noise characteristic of transonic deep buffeting over an airfoil

Author:

Abstract

Transonic buffeting can induce strong noise and reduce aircraft lifespan. In view of the complexity of the transonic buffeting flow, this study combines the highly accurate Delayed-Detached Eddy Simulation and Discrete Frequency Response method to analyze the flow field and sound propagation law in different buffeting states and also investigates its noise-generating characteristics by Dynamic Mode Decomposition and Pearson correlation. It is found that the low-frequency and small-amplitude shock oscillation of the light buffeting state is insufficient to trigger large separated flow. Besides, the reattachment phenomenon occurs in the trailing edge, which is the second mode of boundary layer separation, corresponding to the lower Sound Pressure Levels (SPL). In the deep buffeting state, however, the shock oscillates with high frequency and large amplitude, producing large separated bubbles without the reattachment phenomenon, which is the first mode of boundary layer separation. Moreover, there is a large-scale vortex structure with high energy content in the recirculation zone, which develops toward the trailing edge under the action of convection and produces strong Upstream Traveling Waves (UTWs). The collision occurs between UTWs and the shock wave oscillation. In this process, they promote each other, which increases the shock wave oscillation frequency and SPL. This state is not the superposition effect of buffeting and stall. And its main sound sources are shock oscillation and the von Kármán mode.

Funder

The Aviation Science Foundation of China

The 111 Project of China

the Fundamental Research Funds for the Central Universities

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Reference51 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3