Study on Optimization Design of Airfoil Transonic Buffet with Reinforcement Learning Method

Author:

Chen Hao12,Gao Chuanqiang1ORCID,Wu Jifei3,Ren Kai1ORCID,Zhang Weiwei1

Affiliation:

1. School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China

2. School of Aerospace Engineering, Xiamen University, Xiamen 361001, China

3. Aerodynamics Research and Development Center, Mianyang 621000, China

Abstract

Transonic buffet is a phenomenon of large self-excited shock oscillations caused by shock wave-boundary layer interaction, which is one of the common flow instability problems in aeronautical engineering. This phenomenon involves unsteady flow, which makes optimal design more difficult. In this paper, aerodynamic shape optimization design is combined with reinforcement learning to address the problem of transonic buffet. Using the deep deterministic policy gradient (DDPG) algorithm, a reinforcement learning-based design framework for airfoil shape optimization was constructed to achieve effective suppression of transonic buffet. The aerodynamic characteristics of the airfoil were calculated by the computational fluid dynamics (CFD) method. After optimization, the buffet onset angles of attack of the airfoils NACA0012 and RAE2822 were improved by 2° and 1.2° respectively, and the lift-drag ratios improved by 83.5% and 30% respectively. Summarizing and verifying the optimization results, three general conclusions can be drawn to improve the buffet performance: (1) narrowing of the leading edge of the airfoil; (2) situating the maximum thickness position at approximately 0.4 times the chord length; (3) increasing the thickness of the trailing edge within a certain range. This paper established a reinforcement learning-based unsteady optimal design method that enables the optimization of unsteady problems, including buffet.

Funder

Aviation Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3