Low-damage electron beam lithography for nanostructures on Bi2Te3-class topological insulator thin films

Author:

Andersen Molly P.12ORCID,Rodenbach Linsey K.23ORCID,Rosen Ilan T.24ORCID,Lin Stanley C.5ORCID,Pan Lei6ORCID,Zhang Peng6,Tai Lixuan6ORCID,Wang Kang L.6,Kastner Marc A.237ORCID,Goldhaber-Gordon David23ORCID

Affiliation:

1. Department of Materials Science and Engineering, Stanford University 1 , Stanford, California 94305, USA

2. Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory 2 , Menlo Park, California 94025, USA

3. Department of Physics, Stanford University 3 , Stanford, California 94305, USA

4. Department of Applied Physics, Stanford University 4 , Stanford, California 94305, USA

5. Stanford Nano Shared Facilities, Stanford University 5 , Stanford, California 94305, USA

6. Department of Electrical and Computer Engineering, Department of Physics and Astronomy, University of California 6 , Los Angeles, California 90095, USA

7. Department of Physics, Massachusetts Institute of Technology 7 , Cambridge, Massachusetts 02139, USA

Abstract

Nanostructured topological insulators (TIs) have the potential to impact a wide array of condensed matter physics topics, ranging from Majorana physics to spintronics. However, the most common TI materials, the Bi2Se3 family, are easily damaged during nanofabrication of devices. In this paper, we show that electron beam lithography performed with a 30 or 50 kV accelerating voltage—common for nanopatterning in academic facilities—damages both nonmagnetic TIs and their magnetically doped counterparts at unacceptable levels. We additionally demonstrate that electron beam lithography with a 10 kV accelerating voltage produces minimal damage detectable through low-temperature electronic transport. Although reduced accelerating voltages present challenges in creating fine features, we show that with careful choice of processing parameters, particularly the resist, 100 nm features are reliably achievable.

Funder

Basic Energy Sciences

Army Research Office

National Science Foundation

Gordon and Betty Moore Foundation

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3