Electron g-factor determined for quantum dot circuit fabricated from (110)-oriented GaAs quantum well

Author:

Nakagawa T.1,Lamoureux S.23,Fujita T.14ORCID,Ritzmann J.5ORCID,Ludwig A.5ORCID,Wieck A. D.5ORCID,Oiwa A.146ORCID,Korkusinski M.2,Sachrajda A.2,Austing D. G.2,Gaudreau L.2ORCID

Affiliation:

1. SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan

2. Emerging Technology Division, National Research Council, Ottawa K1A0R6, Canada

3. Département de Physique, Université de Sherbrooke, Sherbrooke J1K 2R1, Canada

4. Center for Quantum Information and Quantum Biology (QIQB), Osaka University, Osaka 565-0871, Japan

5. Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, Universitätsstraße 150, Gebäude NB, Bochum D-44780, Germany

6. Center for Spintronics Research Network (CSRN), Graduate School of Engineering Science, Osaka University, Osaka 560-8531, Japan

Abstract

The choice of substrate orientation for semiconductor quantum dot circuits offers opportunities for tailoring spintronic properties such as g-factors for specific functionality. Here, we demonstrate the operation of a few-electron double quantum dot circuit fabricated from a (110)-oriented GaAs quantum well. We estimate the in-plane electron g-factor from the profile of the enhanced inter-dot tunneling (leakage) current near-zero magnetic field. Spin blockade due to Pauli exclusion can block inter-dot tunneling. However, this blockade becomes inactive due to hyperfine interaction mediated spin flip-flop processes between electron spin states and the nuclear spin of the host material. The g-factor of absolute value ∼0.1 found for a magnetic field parallel to the direction [Formula: see text] is approximately a factor of four lower than that for comparable circuits fabricated from a material grown on widely employed standard (001) GaAs substrates and is in line with reported values determined by purely optical means for quantum well structures grown on (110) GaAs substrates.

Funder

Japan Society for the Promotion of Science

Core Research for Evolutional Science and Technology

Moonshot Research and Development Program

Asahi Glass Foundation

Deutsch-Französische Hochschule

Deutsche Forschungsgemeinschaft

Berlin Center for Machine Learning

National Research Council Canada

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3