Affiliation:
1. School of Environmental and Materials Engineering, Yantai University 1 , Yantai 264005, China
2. Department of Earth Sciences, University of Cambridge 2 , Cambridge CB2 3EQ, United Kingdom
Abstract
Neuromorphic computation is based on memristors, which function equivalently to neurons in brain structures. These memristors can be made more efficient and tailored to neuromorphic devices by using ferroelastic domain boundaries as fast diffusion paths for ionic conduction, such as of oxygen, sodium, or lithium. In this paper, we show that the local memristor generates a second, unexpected feature, namely, weak magnetic fields that emerge from moving ferroelastic needle domains and vortices. The vortices appear near ferroelastic “junctions” that are common when the external stimulus is a combination of electric fields and structural phase transitions. Many ferroelastic materials show such phase transitions near room temperatures so that device applications display a “multiferroic” scenario where the memristor is driven electrically and read magnetically. Our computer simulation study of an elastic spring model suggests magnetic fields in the order of 10−7 T, which opens the way for a fundamentally new way of running neuromorphic devices. The magnetism in such devices emerges entirely from intrinsic displacement currents and not from any intrinsic magnetism of the material.
Funder
Engineering and Physical Sciences Research Council
EU Horizon Grant
National Natural Science Foundation of China
Doctoral Starting Grant of Yantai University
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献