Electrically conductive and flexible filaments of hot melt adhesive for the fused filament fabrication process

Author:

Misiak Michał1ORCID,Latko-Durałek Paulina12ORCID,Baldy Emilia1,Durałek Paweł2,Górecka Żaneta1ORCID,Malmir Amir3ORCID,Hatzikiriakos Savvas G.3ORCID

Affiliation:

1. Faculty of Materials Science and Engineering, Warsaw University of Technology 1 , Woloska 141, 02-507 Warsaw, Poland

2. Technology Partners Foundation 2 , Bitwy Warszawskiej 1920r. 7A, 02-366 Warsaw, Poland

3. Department of Chemical and Biological Engineering, University of British Columbia 3 , 2360 East Mall Vancouver, British Columbia V6T 1Z3, Canada

Abstract

Fused filament fabrication technique is the most popular additive manufacturing that has received extensive attention, revolutionizing industrial production processes. In addition to the standard thermoplastic polymers, much emphasis is placed on developing electrically conductive functional filaments being the most interesting. While there are conductive filaments that are commercially available, the market lacks a wide range of flexible options. Hence, this paper presents innovative filaments based on the combination of thermoplastic hot melt copolyester adhesive (HMA) with multi-walled carbon nanotubes (MWCNT). The incorporation of carbon nanotubes into the HMA was carried out through a two-step process. First, a masterbatch of 10 wt. % MWCNT was diluted with pure polymer using a half-industrial twin-screw extruder to obtain concentrations in the range of 1–9 wt. %. Consequently, the nanocomposite pellets were extruded again into the form of filaments. The rheological analysis demonstrates that adding MWCNT to the HMA increases both the viscous and elastic behavior of the composites. The homogenously dispersed nanotubes in the polymer matrix led to electrical conductivity of 1.39 S/m for the filaments containing 10 wt. % MWCNT. They are also characterized by the stiffness and tensile strength of about 300 and 13 MPa, respectively. With high thermal stability up to 360 °C, low porosity, and high flexibility, the developed filaments are suitable for 3D printing. The printability of all filaments was confirmed, exhibiting lack of breakage during printing and visibly better quality of the parts with the higher nanotube content.

Funder

EEA Grants/Norway Grants

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3