Effect of Material and Process Specific Factors on the Strength of Printed Parts in Fused Filament Fabrication: A Review of Recent Developments

Author:

Harris Muhammad,Potgieter Johan,Archer Richard,Arif Khalid MahmoodORCID

Abstract

Additive manufacturing (AM) is rapidly evolving as the most comprehensive tool to manufacture products ranging from prototypes to various end-user applications. Fused filament fabrication (FFF) is the most widely used AM technique due to its ability to manufacture complex and relatively high strength parts from many low-cost materials. Generally, the high strength of the printed parts in FFF is attributed to the research in materials and respective process factors (process variables, physical setup, and ambient temperature). However, these factors have not been rigorously reviewed for analyzing their effects on the strength and ductility of different classes of materials. This review systematically elaborates the relationship between materials and the corresponding process factors. The main focus is on the strength and ductility. A hierarchical approach is used to analyze the materials, process parameters, and void control before identifying existing research gaps and future research directions.

Funder

Ministry of Business, Innovation and Employment

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3