Damping rate measurements and predictions for gravity waves in an air–oil–water system

Author:

Rajan Girish Kumar1ORCID

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Tirupati, AP 517619, India

Abstract

Dissipation of standing gravity waves of frequencies within 1–2 Hz is investigated experimentally. The waves are generated in a rectangular tank filled with water, the surface of which is covered with an oil layer of mean thickness, d. Damping rates are measured as a function of d, and compared with results from established theoretical models—in particular, with those from a recently developed three-fluid dissipation model that considers waves in a system of semi-infinitely deep fluids that lie above and below an interfacial fluid layer of finite thickness. Based on a comparison of experimental data with predictions, the oil–water interfacial elasticity, E2, is empirically determined to be a linear function of d. The theoretical predictions include contributions from the three-fluid dissipation model, which accounts for energy losses due to shear layers at the interfaces, friction in the fluid bulk, and compression–expansion oscillations of the elastic interfaces; and from a boundary-layer dissipation model, which accounts for energy losses due to boundary layers at the tank's solid surfaces. The linear function, [Formula: see text], is used to compute the three-fluid model damping rate. An effective viscosity of the oil–water system is used to compute the boundary-layer model damping rate. The theoretical predictions are, on average, within 5% of measurements for all the wave frequencies considered. The promise shown by the three-fluid model is highlighted, as are the assumptions involved in the analysis and comparisons.

Funder

Science and Engineering Research Board

National Science Foundation

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3