Damping of liquid sloshing by floating balls

Author:

Gurusamy Saravanan1ORCID

Affiliation:

1. School of Engineering, Trinity College Dublin , College Green, Dublin 2, Ireland

Abstract

Sloshing in partially filled containers is a key phenomenon for the design of offshore structures such as liquefied natural gas carriers, floating production storage and offloading platforms, crude oil carriers, and floating liquefied natural gas vessels, due to large sloshing force acting on container's walls. Hence, violent sloshing motion needs to be mitigated for the safe operation of the floating structures. This study is focused on the experimental investigation of a sloshing damping device based on floating balls. The free-surface sloshing waves are generated in a rectangular tank filled with water, the free-surface of which is covered by a layer of floating balls. Three important sloshing regimes, namely, shallow, intermediate, and finite-water depth sloshing, are considered for investigation. Frequency responses of sloshing with and without balls are obtained to comprehend the effects of floating balls on damping of sloshing odd modes (first, third, fifth, and ninth modes). Further, physical processes enhancing damping mechanisms are also investigated in detail. It is found that the floating balls dampen shallow-water sloshing effectively. Different motions of the balls, ball–ball interactions, motions of ball–liquid interfaces, and liquid shear-flow motion between the tank wall and balls cause the dominant mechanism of energy dissipation.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3