An analytical treatment of electron spectral saturation for dynamic nuclear polarization NMR of rotating solids

Author:

Gan Zhehong1ORCID

Affiliation:

1. National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, USA

Abstract

Saturation of electron magnetization by microwave irradiation under magic-angle spinning (MAS) is studied theoretically. The saturation is essential for dynamic nuclear polarization (DNP) enhancement of nuclear magnetic resonance signals. For a spin with a large g-anisotropy and a long T1 relative to the rotor period, the sample rotation distributes saturation to the whole powder sample spectrum. Analytical expressions for the saturation and frequency profiles are obtained. For a pair of coupled electrons such as those in bis-nitroxides, which are commonly used for MAS DNP, an el– er model (where el and er stand for electrons on the left and the right, respectively, in their spectral positions) is introduced to simplify the analysis of a coupled two-spin system under MAS. For such a system, strong electron couplings exchange magnetization during dipolar/ J rotor events when the two electron frequencies cross each other. The exchange is equivalent to a swap of the el and er electrons. This allows for the treatment of a coupled spin pair as two independent spins such that an analytical solution can be obtained for the steady-state magnetization and the difference between the two electrons. The theoretical study with its analytical result provides a simple physical picture of electron saturation under MAS and of how radical properties and experimental parameters affect cross-effect DNP. The effects of depolarization and the extension to more coupled electron spins are also discussed using this approach.

Funder

National Science Foundation

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3