Quantum–classical dynamics of vibration-induced autoionization in molecules

Author:

Issler Kevin1ORCID,Mitrić Roland1ORCID,Petersen Jens1ORCID

Affiliation:

1. Institut für physikalische und theoretische Chemie, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Str. 42, 97074 Würzburg, Germany

Abstract

We present a novel method for the simulation of the vibration-induced autoionization dynamics in molecular anions in the framework of the quantum–classical surface hopping approach. Classical trajectories starting from quantum initial conditions are propagated on a quantum-mechanical potential energy surface while allowing for autoionization through transitions into discretized continuum states. These transitions are induced by the couplings between the electronic states of the bound anionic system and the electron-detached system composed of the neutral molecule and the free electron. A discretization scheme for the detached system is introduced, and a set of formulas is derived that enable the approximate calculation of couplings between the bound and free-electron states. We demonstrate our method on the example of the anion of vinylidene, a high-energy isomer of acetylene, for which detailed experimental data are available. Our results provide information on the time scale of the autoionization process and give insight into the energetic and angular distribution of the ejected electrons, as well as the associated changes in the molecular geometry. We identify the formation of structures with reduced C–C bond lengths and T-like conformations through bending of the CH2 group with respect to the C–C axis and point out the role of autoionization as a driving process for the isomerization to acetylene.

Funder

Deutsche Forschungsgemeinschaft

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3