HORTENSIA, a program package for the simulation of nonadiabatic autoionization dynamics in molecules

Author:

Issler Kevin1ORCID,Mitrić Roland1ORCID,Petersen Jens1ORCID

Affiliation:

1. Julius-Maximilians-Universität Würzburg, Institut für Physikalische und Theoretische Chemie , Emil-Fischer-Str. 42, 97074 Würzburg, Germany

Abstract

We present a program package for the simulation of ultrafast vibration-induced autoionization dynamics in molecular anions in the manifold of the adiabatic anionic states and the discretized ionization continuum. This program, called HORTENSIA (Hopping Real-time Trajectories for Electron-ejection by Nonadiabatic Self-Ionization in Anions), is based on the nonadiabatic surface-hopping methodology, wherein nuclei are propagated as an ensemble along classical trajectories in the quantum-mechanical potential created by the electronic density of the molecular system. The electronic Schrödinger equation is numerically integrated along the trajectory, providing the time evolution of electronic state coefficients, from which switching probabilities into discrete electronic states are determined. In the case of a discretized continuum state, this hopping event is interpreted as the ejection on an electron. The derived diabatic and nonadiabatic couplings in the time-dependent electronic Schrödinger equation are calculated from anionic and neutral wavefunctions obtained from quantum-chemical calculations with commercially available program packages interfaced with our program. Based on this methodology, we demonstrate the simulation of autoionization electron kinetic energy spectra that are both time- and angle-resolved. In addition, the program yields data that can be interpreted easily with respect to geometric characteristics, such as bonding distances and angles, which facilitate the detection of molecular configurations important for the autoionization process. Furthermore, several useful extensions are included, namely, tools for the generation of initial conditions and input files as well as for the evaluation of output files, all of this both through console commands and a graphical user interface.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3