Recurrent neural networks for dynamical systems: Applications to ordinary differential equations, collective motion, and hydrological modeling

Author:

Gajamannage K.1ORCID,Jayathilake D. I.2ORCID,Park Y.1ORCID,Bollt E. M.3ORCID

Affiliation:

1. Department of Mathematics and Statistics, Texas A&M University—Corpus Christi 1 , Corpus Christi, Texas 78412, USA

2. Department of Physical and Environmental Sciences, Texas A&M University—Corpus Christi 2 , Corpus Christi, Texas 78412, USA

3. Department of Electrical and Computer Engineering and The Clarkson Center for Complex Systems, Clarkson University 3 , Potsdam, New York 13699, USA

Abstract

Classical methods of solving spatiotemporal dynamical systems include statistical approaches such as autoregressive integrated moving average, which assume linear and stationary relationships between systems’ previous outputs. Development and implementation of linear methods are relatively simple, but they often do not capture non-linear relationships in the data. Thus, artificial neural networks (ANNs) are receiving attention from researchers in analyzing and forecasting dynamical systems. Recurrent neural networks (RNNs), derived from feed-forward ANNs, use internal memory to process variable-length sequences of inputs. This allows RNNs to be applicable for finding solutions for a vast variety of problems in spatiotemporal dynamical systems. Thus, in this paper, we utilize RNNs to treat some specific issues associated with dynamical systems. Specifically, we analyze the performance of RNNs applied to three tasks: reconstruction of correct Lorenz solutions for a system with a formulation error, reconstruction of corrupted collective motion trajectories, and forecasting of streamflow time series possessing spikes, representing three fields, namely, ordinary differential equations, collective motion, and hydrological modeling, respectively. We train and test RNNs uniquely in each task to demonstrate the broad applicability of RNNs in the reconstruction and forecasting the dynamics of dynamical systems.

Funder

Google

Army Research Office

National Institutes of Health

Defense Advanced Research Projects Agency

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3