Quantum Recurrent Neural Networks: Predicting the Dynamics of Oscillatory and Chaotic Systems

Author:

Chen Yuan1,Khaliq Abdul2ORCID

Affiliation:

1. Computational and Data Science Program, Middle Tennessee State University, Murfreesboro, TN 37132, USA

2. Department of Mathematical Sciences, Middle Tennessee State University, Murfreesboro, TN 37132, USA

Abstract

In this study, we investigate Quantum Long Short-Term Memory and Quantum Gated Recurrent Unit integrated with Variational Quantum Circuits in modeling complex dynamical systems, including the Van der Pol oscillator, coupled oscillators, and the Lorenz system. We implement these advanced quantum machine learning techniques and compare their performance with traditional Long Short-Term Memory and Gated Recurrent Unit models. The results of our study reveal that the quantum-based models deliver superior precision and more stable loss metrics throughout 100 epochs for both the Van der Pol oscillator and coupled harmonic oscillators, and 20 epochs for the Lorenz system. The Quantum Gated Recurrent Unit outperforms competing models, showcasing notable performance metrics. For the Van der Pol oscillator, it reports MAE 0.0902 and RMSE 0.1031 for variable x and MAE 0.1500 and RMSE 0.1943 for y; for coupled oscillators, Oscillator 1 shows MAE 0.2411 and RMSE 0.2701 and Oscillator 2 MAE is 0.0482 and RMSE 0.0602; and for the Lorenz system, the results are MAE 0.4864 and RMSE 0.4971 for x, MAE 0.4723 and RMSE 0.4846 for y, and MAE 0.4555 and RMSE 0.4745 for z. These outcomes mark a significant advancement in the field of quantum machine learning.

Publisher

MDPI AG

Reference51 articles.

1. Zakwan, M., Di Natale, L., Svetozarevic, B., Heer, P., Jones, C.N., and Ferrari Trecate, G. (2022). Physically Consistent Neural ODEs for Learning Multi-Physics Systems. arXiv.

2. Benchmarking of numerical integration methods for ODE models of biological systems;Schmiester;Sci. Rep.,2021

3. Yazdani, A., Lu, L., Raissi, M., and Karniadakis, G.E. (2020). Systems biology informed deep learning for inferring parameters and hidden dynamics. PLoS Comput. Biol., 16.

4. Jorge, M. (2014). An Application of Ordinary Differential Equations in Economics: Modeling Consumer’s Preferences Using Marginal Rates of Substitution. Math. Methods Sci. Mech., 33.

5. Bashforth, F., and Adams, J.C. (2007). An Attempt to Test the Theories of Capillary Action by Comparing the Theoretical and Measured Forms of Drops of Fluid, University Press. (1883) Paperback.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3