Dissolution characteristics of solutes with different shapes using the moving particle semi-implicit method

Author:

Zhang Kai1ORCID,Zhou Zi-Qi1ORCID,Han Pei-Dong1ORCID,Sun Zhong-Guo1ORCID,Xi Guang1ORCID

Affiliation:

1. School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China

Abstract

Dissolution characteristics of solutes with different shapes are studied. To simulate the process of dissolution, a diffusion and dissolution model based on the moving particle semi-implicit (MPS) method is proposed. First, the diffusion equation is introduced to the MPS method. Compared with the analytical solution, concentration diffusion can be accurately simulated with the model. Then, a coupling relationship between concentration, density, and viscosity is established. The relationship deals with the changes in physical parameters of the fluids caused by the diffusion, affecting the fluid flow. As the density change cannot be ignored in the mass conservation equation, the equation is re-deduced in this paper. In addition, the dissolution model is introduced to the MPS method. The dissolution model is verified by the dissolution simulation of sessile droplets in water. Finally, the dissolution of solutes with different shapes in water is simulated using the proposed method. Five cases with different solute shapes are set to simulate five different drugs. Five cases with different solute shapes are set to simulate five different drugs. The solid solute shapes used are rectangle, capsule, heart-shaped, and circle, and the liquid solute is a rectangle shape. The dissolution of the solute is comprehensively affected by the contact between the solute and water, the concentration difference, and the intensity of convection. The small concentration difference and the low convective velocity cause the existence of insoluble points in the heart-shaped case, which decreases the dissolution rate. Dimensional analysis is carried out to address the relative importance of diffusion to convection. In the dissolution of solutes with different shapes, the effect of convective cannot be ignored when the non-dimensional number is lower than 2.5 × 10−5.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3