Anomalous narrow-band optical anisotropy of MoO2 crystal in the visible regime

Author:

Yu Yu1ORCID,Shen Wanfu12ORCID,Ma Guoteng1ORCID,Luo Qingqing1,Huang Yufeng1,Lu Huoqing1,Wang Haile1,Sun Lidong3ORCID,Hu Chunguang1ORCID

Affiliation:

1. State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Weijin Road 92, Nankai District, CN-300072 Tianjin, China

2. Nanchang Institute for Microtechnology of Tianjin University, Weijin Road 92, Nankai District, 300072 Tianjin, China

3. Institute of Experimental Physics, Johannes Kepler University Linz, A-4040 Linz, Austria

Abstract

The emergence of anisotropic two-dimensional (2D) materials provides a platform for the cutting-edge nano- and optoelectronic devices. Exploring low-dimensional materials and revealing their anisotropic behavior are crucial for designing angle-dependent nanodevices. The metallicity of molybdenum dioxide (MoO2) crystal differentiates it from the most commonly studied semi-conductive anisotropic 2D materials. However, the studies on its optical anisotropy are still lacking. Here, two most commonly obtained shapes of rhombic and hexagonal MoO2 were synthesized by one step method of chemical vapor deposition. The rhombic and hexagonal MoO2 display a slight frequency shift of 1–5 cm−1 depending on the variation modes, but the Raman modes at 366 cm−1 remain unaltered. Using a combination of differential reflectance spectroscopy and reflectance difference spectroscopy, we revealed the unusual narrow-band optical anisotropies of rhombic and hexagonal MoO2 crystals in the visible wavelength region due to its unique metallic properties. Furthermore, it is found that the center wavelengths of the narrow-band optical anisotropy of the MoO2 crystal can be effectively adjusted by coherent optical interference. Our results present an interesting anisotropic metallic 2D candidate and an effective cavity-based approach to regulate the center wavelengths of as-obtained narrow-band optical anisotropy, which is highly beneficial for the wavelength-selected devices.

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3