Effects of specular reflectance in laser-induced breakdown of metals

Author:

Qiu Yan1ORCID,Shi Mingxin2ORCID,Zhou Ying2ORCID,Wu Jian2ORCID,Li Yongdong1ORCID,Li Xingwen2ORCID

Affiliation:

1. Key Laboratory of Physical Electronics and Devices, Ministry of Education, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University 1 , Xi'an, Shaanxi 710049, China

2. State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University 2 , Xi'an, Shaanxi 710049, China

Abstract

We investigate the effects of specular reflection on the laser-induced breakdown (LIB) of copper, iron, and tungsten using fast photography and optical emission spectroscopy. The laser parameters include spot diameter ranging from 30.89 to 1589.33 μm, irradiance from 467.10 to 0.17 GW/cm2, with a single pulse of 6 ns duration and 21 mJ energy. As the laser spot defocuses, the plasma morphology changes from a single plasma near the target surface to a separated, independently evolving two-component plasma, and then to a single plasma suspended above. The defocusing distance for this transition is significantly influenced by specular reflectance. The separate plasma, comprising of a metallic component and an air component, occurs only under high specular reflectance conditions: ≥66.7% for copper, ≥51.4% for iron, and ≥44.9% for tungsten. The spectral emission of the metallic component initially increases and then decreases with reducing specular reflectance, due to a trade-off between enhanced surface absorption and reduced irradiance caused by surface roughening. LIB threshold irradiance increases with specular reflectance, rising from 0.31 to 1.22 GW/cm2 for copper, 0.24 to 0.70 GW/cm2 for iron, and 0.38 to 0.87 GW/cm2 for tungsten. These findings show the impact of sample pretreatment on LIB ignition and subsequent plasma evolution, offering insights into potential sources of inaccuracy in LIB applications.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Fundamental Research Funds for the Central Universities

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3