Plasma-induced damage on the tungsten surface using a kilojoule plasma focus device: Applicable to study the damages on nuclear fusion reactor related materials

Author:

Jain Jalaj1ORCID,Carrasco Marcos Flores2ORCID,Moreno Jose13ORCID,Davis Sergio13ORCID,Pavez Cristian13ORCID,Bora Biswajit13ORCID,Soto Leopoldo13ORCID

Affiliation:

1. Research Center on the Intersection in Physics of Plasmas, Matter and Complexity, P2mc, Comisión Chilena de Energía Nuclear 1 , Casilla 188-D, Santiago, Chile

2. Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile 2 , Beauchef 850, Santiago, Chile

3. Universidad Andres Bello, Departamento de Ciencias Físicas 3 , Republica 220, Santiago, Chile

Abstract

Damages induced on the tungsten surface at two different operating conditions of a kilojoule plasma focus device are studied. In one condition, the tungsten samples were exposed to axial plasma shocks that are formed after pinch disruption, and in the other condition, the pinch phenomenon was absent or weak. Melting, craters, and cracking on the surfaces were observed in both cases. In the former case, the charged particle beams and post-pinch material ejection will play a role in impacting the surface; however, in the latter case those phenomena will have small contributions because of the absence or weak formation of the pinch. A damage factor of ∼109 W m−2 s0.5 was estimated at a distance of 3 cm from the pinch exit using the method given in Akel et al. [J. Fusion Energy 35, 694–701 (2016)] and Klimov et al. [J. Nucl. Mater. 390, 721–726 (2009)] for the former case. The present work suggests that at pressures lower than the pinch-occurring pressure, only axial plasma shock effects on the targeted surface can be studied and that they can be separated from the effects produced by the charged particle beams mixed with axial plasma shocks in the case of pinch occurrence.

Funder

Fondo Nacional de Desarrollo Científico y Tecnológico

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3