Time-resolved vibrational-pump visible-probe spectroscopy for thermal conductivity measurement of metal-halide perovskites

Author:

Li Shunran12ORCID,Dai Zhenghong3ORCID,Li Linda1,Padture Nitin P.3ORCID,Guo Peijun12ORCID

Affiliation:

1. Department of Chemical and Environmental Engineering, Yale University, 9 Hillhouse Avenue, New Haven, Connecticut 06520, USA

2. Energy Sciences Institute, Yale University, 810 West Campus Drive, West Haven, Connecticut 06516, USA

3. School of Engineering, Brown University, Providence, Rhode Island 02912, USA

Abstract

Understanding thermal transport at the microscale to the nanoscale is crucially important for a wide range of technologies ranging from device thermal management and protection systems to thermal-energy regulation and harvesting. In the past decades, non-contact optical methods, such as time-domain and frequency-domain thermoreflectance, have emerged as extremely powerful and versatile thermal metrological techniques for the measurement of material thermal conductivities. Here, we report the measurement of thermal conductivity of thin films of CH3NH3PbI3 (MAPbI3), a prototypical metal-halide perovskite, by developing a time-resolved optical technique called vibrational-pump visible-probe (VPVP) spectroscopy. The VPVP technique relies on the direct thermal excitation of MAPbI3 by femtosecond mid-infrared optical pump pulses that are wavelength-tuned to a vibrational mode of the material, after which the time dependent optical transmittance across the visible range is probed in the ns to the μs time window using a broadband pulsed laser. Using the VPVP method, we determine the thermal conductivities of MAPbI3 thin films deposited on different substrates. The transducer-free VPVP method reported here is expected to permit spectrally resolving and spatiotemporally imaging of the dynamic lattice temperature variations in organic, polymeric, and hybrid organic–inorganic semiconductors.

Funder

Office of Naval Research

Publisher

AIP Publishing

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3