Modal analysis of non-ducted and ducted propeller wake under axis flow

Author:

Shi Hongda1234ORCID,Wang Tianyuan1ORCID,Zhao Ming5ORCID,Zhang Qin1ORCID

Affiliation:

1. College of Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100, China

2. Shandong Provincial Key Laboratory of Ocean Engineering, 238 Songling Road, Qingdao 266100, China

3. Pilot National Laboratory for Marine Science and Technology (Qingdao), 1, Wenhai Road, Aoshanwei, Jimo, Qingdao 266237, China

4. Qingdao Municipal Key Laboratory of Ocean Renewable Energy, Ocean University of China, Qingdao 266100, China

5. School of Computing, Engineering and Mathematics, Western Sydney University, Penrith, New South Wales 2751, Australia

Abstract

Modal decomposition techniques, flow field, and spectral analysis are employed to investigate the wake dynamics and destabilization mechanisms of a four-bladed marine propeller with or without a nozzle. Numerical simulations are conducted using the delayed detached eddy simulation model for the wake and the arbitrary mesh interface method for the blade rotation. The presence of the nozzle significantly reduces the wake's streamwise velocity, delays the wake destabilization, increases the wake length, and changes the morphologies of wake vortices. In particular, the hub vortex in the ducted propeller wake is broken down into chaotic turbulence by the perturbation of the backflow. Two modal decomposition methods, namely, proper orthogonal decomposition and dynamic mode decomposition, are used to decompose the vorticity magnitude in the rotor wake field. From modal analysis, the spatial scale of flow phenomena decreases with the increase in modal frequency. Underlying destabilization mechanisms in the wake correspond to some characteristic frequencies. The interaction of each sheet vortex with the previously shed tip (leakage) vortices occurs at blade passing frequency (BPF). The pairing of adjacent tip (leakage) vortices occurs at half-BPF. The long-wave instability of the hub vortex and the wake meandering are stochastic processes, each of which occurs at a frequency lower or equal to shaft frequency. These four destabilization mechanisms can approximately reconstruct the large-scale flow phenomena in the wake. Moreover, each sheet vortex's alternating connection and disconnection with the previously shed tip (leakage) vortices cause the short-wave instability of the tip (leakage) vortices and generate the secondary vortices. The radial expansion motion of large-scale helical vortices in the outer slipstream dominates the wake meandering phenomenon.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3