Model-free prediction of multistability using echo state network

Author:

Roy Mousumi1ORCID,Mandal Swarnendu1ORCID,Hens Chittaranjan2ORCID,Prasad Awadhesh3ORCID,Kuznetsov N. V.45ORCID,Dev Shrimali Manish1ORCID

Affiliation:

1. Department of Physics, Central University of Rajasthan, Ajmer 305817, Rajasthan, India

2. Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Gachibowli, Hyderabad 500032, India

3. Department of Physics & Astrophysics, University of Delhi, Delhi 110007, India

4. Department of Applied Cybernetics, Saint Petersburg University, St. Petersburg 198504, Russia

5. Institute for Problems of Mechanical Engineering, Russian Academy of Sciences, St. Petersburg 199178, Russia

Abstract

In the field of complex dynamics, multistable attractors have been gaining significant attention due to their unpredictability in occurrence and extreme sensitivity to initial conditions. Co-existing attractors are abundant in diverse systems ranging from climate to finance and ecological to social systems. In this article, we investigate a data-driven approach to infer different dynamics of a multistable system using an echo state network. We start with a parameter-aware reservoir and predict diverse dynamics for different parameter values. Interestingly, a machine is able to reproduce the dynamics almost perfectly even at distant parameters, which lie considerably far from the parameter values related to the training dynamics. In continuation, we can predict whole bifurcation diagram significant accuracy as well. We extend this study for exploring various dynamics of multistable attractors at an unknown parameter value. While we train the machine with the dynamics of only one attractor at parameter [Formula: see text], it can capture the dynamics of a co-existing attractor at a new parameter value [Formula: see text]. Continuing the simulation for a multiple set of initial conditions, we can identify the basins for different attractors. We generalize the results by applying the scheme on two distinct multistable systems.

Funder

Department of Science and Technology, Ministry of Science and Technology, India

Science and Engineering Research Board

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3