Thermal transport in graphene under large mechanical strains

Author:

Wang Yingtao1ORCID,Zhang Xian1ORCID

Affiliation:

1. Department of Mechanical Engineering, Stevens Institute of Technology , Hoboken, New Jersey 07030, USA

Abstract

Flexible electronic devices with skin-like properties are hailed as revolutionary for the development of next-generation electronic devices, such as electric-skin and humanoid robotics. Graphene is intrinsically flexible due to its structural thinness in nature and are considered next-generation materials for wearable electronics. These devices usually experience a large mechanical deformation in use so as to achieve intimate conformal contact with human skin and to coordinate complex human motions, while heat dissipation has been a major limitation when the device is under a large mechanical strain. Unlike the small deformation (<1%) induced by intrinsic material factors such as lattice mismatch between material components in devices, a large mechanical deformation (>1%) by an external loading condition could lead to apparent changes to global geometric shapes and significantly impact thermal transport. In this study, we investigated the thermal conductivities of graphene under several large mechanical strains: 2.9%, 4.3%, and 6.1%. We used a refined opto-thermal Raman technique to characterize the thermal transport properties and discovered the thermal conductivities to be 2092 ± 502, 972 ± 87, 348 ± 52, and 97 ± 13 W/(m K) for the relaxed state, 2.9%, 4.3%, and 6.1% tensile strain, respectively. Our results showed a significant decreasing trend in thermal conductivities with an increasing mechanical strain. The findings in this study reveal new thermal transport mechanisms in 2D materials and shed light on building novel flexible nanoelectronic devices with enhanced thermal management.

Funder

National Science Foundation

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3