The Potential of Tellurene‐Like Nanosheets as a Solution‐Processed Room‐Temperature Thermoelectric Material

Author:

Pan Zhenyu1,Zhang Xinbo1,DiSturco Isabella2,Mao Yuanbing3,Zhang Xian2,Wang Heng1ORCID

Affiliation:

1. Department of Mechanical, Materials, and Aerospace Engineering Illinois Institute of Technology Chicago IL 60616 USA

2. Department of Mechanical Engineering Stevens Institute of Technology Hoboken NJ 07030 USA

3. Department of Chemistry Illinois Institute of Technology Chicago IL 60616 USA

Abstract

Low‐dimensional thermoelectric materials systems are proven to possess improved thermoelectric performance, either by enhancing the power factor S2σ through quantum confinement, or decreasing thermal conductivity with numerous interfaces. The 2D tellurium, also called tellurene, is a newly discovered 2D material which showed great potential for thermoelectric applications. In this article, high‐quality tellurene‐like nanosheets are synthesized by the hydrothermal method and assembled into nanostructured bulk materials by low‐temperature hot press, and their thermoelectric performance is investigated. Ultraviolet–ozone treatment is used to remove organic surface ligands. Doping is realized with surface doping with chalcogenidometalates. It is found that the Seebeck coefficient and the thermal conductivity of the nanosheet‐assembled bulk samples increased by ≈20% and decreased by 43% compared to bulk tellurium, respectively. Meanwhile, the carrier mobility is approaching, yet still lower than bulk tellurium. Overall, the best bulk sample possesses a zT of 0.1 at room temperature which is comparable to bulk Te. By further improving the mobility, this solution processable material can provide useful thermoelectric performance for room‐temperature applications.

Funder

National Science Foundation

Publisher

Wiley

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3