Prediction of glassy silica etching with hydrogen fluoride gas by kinetic Monte Carlo simulations

Author:

Park Hyunhang1ORCID,Antony Andrew C.2ORCID,Banerjee Joy3ORCID,Smith Nicholas J.3,Agnello Gabriel3ORCID

Affiliation:

1. Corning Technology Center Korea, Corning Precision Materials Co., Ltd. 1 , 212 Tangjeong-ro, Asan, Chungcheongnam-do 31454, Republic of Korea

2. Manufacturing, Technology, and Engineering Division, Corning Incorporated, One Science Center Drive 2 , Corning, New York 14831, USA

3. Science and Technology Division, Corning Incorporated 3 , One Science Center Drive, Corning, New York 14831, USA

Abstract

Understanding the surface properties of glass during the hydrogen fluoride (HF)-based vapor etching process is essential to optimize treatment processes in semiconductor and glass industries. In this work, we investigate an etching process of fused glassy silica by HF gas with kinetic Monte Carlo (KMC) simulations. Detailed pathways of surface reactions between gas molecules and the silica surface with activation energy sets are explicitly implemented in the KMC algorithm for both dry and humid conditions. The KMC model successfully describes the etching of the silica surface with the evolution of surface morphology up to the micron regime. The simulation results show that the calculated etch rate and surface roughness are in good agreement with the experimental results, and the effect of humidity on the etch rate is also confirmed. Development of roughness is theoretically analyzed in terms of surface roughening phenomena, and it is predicted that the values of growth and roughening exponents are 0.19 and 0.33, respectively, suggesting that our model belongs to the Kardar–Parisi–Zhang universality class. Furthermore, the temporal evolution of surface chemistry, specifically surface hydroxyls and fluorine groups, is monitored. The surface density of fluorine moieties is 2.5 times higher than that of the hydroxyl groups, implying that the surface is well fluorinated during vapor etching.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3