Modeling difference x-ray scattering observations from an integral membrane protein within a detergent micelle

Author:

Sarabi Daniel1ORCID,Ostojić Lucija1ORCID,Bosman Robert1,Vallejos Adams1ORCID,Linse Johanna-Barbara1ORCID,Wulff Michael2ORCID,Levantino Matteo2ORCID,Neutze Richard1ORCID

Affiliation:

1. Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden

2. European Synchrotron Radiation Facility, 38043 Grenoble Cedex 9, France

Abstract

Time-resolved x-ray solution scattering (TR-XSS) is a sub-field of structural biology, which observes secondary structural changes in proteins as they evolve along their functional pathways. While the number of distinct conformational states and their rise and decay can be extracted directly from TR-XSS experimental data recorded from light-sensitive systems, structural modeling is more challenging. This step often builds from complementary structural information, including secondary structural changes extracted from crystallographic studies or molecular dynamics simulations. When working with integral membrane proteins, another challenge arises because x-ray scattering from the protein and the surrounding detergent micelle interfere and these effects should be considered during structural modeling. Here, we utilize molecular dynamics simulations to explicitly incorporate the x-ray scattering cross term between a membrane protein and its surrounding detergent micelle when modeling TR-XSS data from photoactivated samples of detergent solubilized bacteriorhodopsin. This analysis provides theoretical foundations in support of our earlier approach to structural modeling that did not explicitly incorporate this cross term and improves agreement between experimental data and theoretical predictions at lower x-ray scattering angles.

Funder

Vetenskapsrådet

HORIZON EUROPE European Research Council

Publisher

AIP Publishing

Subject

Spectroscopy,Condensed Matter Physics,Instrumentation,Radiation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tracking the structural dynamics of proteins with time-resolved X-ray solution scattering;Current Opinion in Structural Biology;2023-10

2. The complex systems and biomedical sciences group at the ESRF: Current status and new opportunities after extremely brilliant source upgrade;Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms;2023-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3