Time-resolved low-pressure air-assisted spray performance and unsteadiness evaluation

Author:

Roberts William L.1ORCID

Affiliation:

1. School of Mechanical Engineering, Beijing Institute of Technology 1 , Beijing 100081, China

Abstract

The main advantages of air-assisted spray are its high-quality atomization at low injection pressures and insensitivity to the viscosity of atomized liquid. In this study, the droplet size and velocity of a low-pressure intermittent air-assisted spray were studied by using phase Doppler anemometry, and the effects of liquid fuel injection duration on time-resolved spray microscopic characteristics and spray unsteadiness were analyzed. Droplet size-velocity joint probability density functions were employed to characterize the droplet diameter-velocity distribution as well as the probability range. A comparison of the droplet Weber number with an empirical critical value indicates that atomized droplets hardly undergo secondary shear breakup. Based on the ideal spray theory of Edwards and Marx, an improved algorithm is proposed with the concept of iterative rejection of inter-particle arrival times to quantify the unsteadiness of air-assisted sprays by eliminating the dependence of the calculation results on droplet sampling data. The results show that intermittent air-assisted spray is an inherently unsteady process that can be influenced by fuel injection duration and spatial location, while independent of the droplet size. In addition, the spray unsteadiness exhibits noteworthy variations at different spray stages segmented by droplet velocity vs time. The relation between the potential internal gas–liquid two-phase status determined by fuel injection duration and the spray performance is elaborated.

Funder

National Natural Science Foundation of China

Ministry of Industry and Information Technology of the People's Republic of China

Beijing Institute of Technology Research Fund Program for Young Scholars

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3