Ultrafast observation of multiple shock waves evolution and interaction processes in femtosecond laser processing

Author:

Abstract

Revealing the expansion and interaction dynamics of multiple shock waves (SWs) induced by a femtosecond laser is important for controlling laser processing. However, the dynamics of SWs is a complex and ultrafast process, making it difficult to determine the specific laws that govern their evolution. In this study, we observed the various evolutionary and interaction processes of SWs generated by a femtosecond laser on fused quartz using pump–probe shadowgraphy. First, we discovered a time-invariant hemispherical plasma chamber (HPC) composed mainly of air plasma before the expansion of material SW, differing from other studies wherein the plasma chamber is usually not observed. Second, the coupling process between the plasma pressure waves (PPWs) and the material SW was studied. After the expansion of material SW, the front plasma of the HPC was ionized again, generating two PPWs in opposite directions and affecting the further expansion of material SW. Eventually, the material SW broke through the HPC and PPWs and evolved into a single SW that expanded continuously. Additionally, it was demonstrated that double pulses with different time delays could effectively control the SW coupling process and plasma evolution, thereby improving the laser-processing efficiency.

Funder

Joint Funds of the National Natural Science Foundation of China

National Natural Science Foundation of China

Beijing Institute of Technology Research Fund Program for Young Scholars

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3