Numerical investigation of the tip-vortex-induced ventilation formation mechanism for a surface-piercing hydrofoil

Author:

Zhi YuchangORCID,Huang RenfangORCID,Qiu Rundi,Wang YiweiORCID,Sun Qun,Cai Shuting

Abstract

Recent experiments have demonstrated that tip vortices can trigger the ventilation formation around a surface-piercing hydrofoil. However, the influence of this ventilation on transient flow structures and vortex evolution remains unresolved. This paper numerically investigates the tip-vortex-induced ventilation formation for a surface-piercing hydrofoil at a stalled yaw angle. The predicted unsteady ventilated cavities with tip vortices and pressure-side spray are in reasonable agreement with experimental observations. The ventilation formation process can be divided into three stages: base ventilation, tip-vortex ventilation, and suction-side ventilation. It is indicated that ventilation has a greater impact on the lift coefficient than the drag coefficient. The lift coefficient increases during the base ventilation and tip-vortex ventilation stages due to the expansion of the low-pressure stalled flow, but decreases in the suction-side ventilation stage because of the gradual replacement of this low-pressure region by an aerated cavity. Tip-leakage and tip-separation vortices initially exist independently at the hydrofoil tip, then expand and merge through air ventilation, ultimately forming a strongly stable tip vortex. Furthermore, ventilation promotes vortex generation, with the major contributors being the vortex stretching and baroclinic torque terms.

Funder

National Natural Science Foundation of China

international partnership program of chinese academy of sciences

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3