Direct laser patterning of ruthenium below the optical diffraction limit

Author:

Cruciani Lorenzo12ORCID,Vreugdenhil Marnix3ORCID,van Vliet Stefan1ORCID,Abram Ester12ORCID,van Oosten Dries3ORCID,Bliem Roland12ORCID,van Druten Klaasjan2ORCID,Planken Paul12ORCID

Affiliation:

1. Advanced Research Center for Nanolithography 1 , Science Park 106, 1098 XG Amsterdam, The Netherlands

2. Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam 2 , Science Park 904, 1098 XH Amsterdam, The Netherlands

3. Debye Institute for Nanomaterials Science and Center for Extreme Matter and Emergent Phenomena, Utrecht University 3 , Princetonplein 5, 3584 CC Utrecht, The Netherlands

Abstract

We describe a method that can be used to produce ruthenium/ruthenium oxide patterns starting from a ruthenium thin film. The method is based on highly localized oxidation of a small surface area of a ruthenium film by means of exposure to a pulsed laser under ambient conditions. Laser exposure is followed by dissolution of the un-exposed ruthenium in a NaClO solution, which leaves the conductive, partially oxidized ruthenium area on the substrate. Spatially selective oxidation, material removal, and, by implication, patterning, are, therefore, achieved without the need for a photoresist layer. Varying the exposure laser parameters, such as fluence, focus diameter, and repetition rate, allows us to optimize the process. In particular, it enables us to obtain circular Ru/RuO2 islands with a sub-diffraction-limited diameter of about 500 nm, for laser exposure times as short as 50 ms. The capability to obtain such small islands suggests that heat-diffusion is not a limiting factor to pattern Ru by laser heating on a (sub-)micron scale. In fact, heat diffusion helps in that it limits the area where a sufficiently high temperature is reached and maintained for a sufficiently long time for oxidation to occur. Our method provides an easy way to produce metallic Ru/RuO2 (sub-)micron structures and has possible applications in semiconductor manufacturing.

Funder

Universiteit van Amsterdam

Vrije Universiteit Amsterdam

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

ASML

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3